Advances in Single-Crystal Fibers and Thin Rods Grown by Laser Heated Pedestal Growth

نویسندگان

  • Gisele Maxwell
  • Ruben Magana
  • Mythili Prakasam
چکیده

Single-crystal fibers are an intermediate between laser crystals and doped glass fibers. They have the advantages of both guiding laser light and matching the efficiencies found in bulk crystals, which is making them ideal candidates for high-power laser and fiber laser applications. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc.) and a polycrystalline clad of yttrium aluminum garnet (YAG) that will exhibit good wave guiding properties. Direct growth or a combination of growth and cladding experiments are described. Scattering loss measurements at visible wavelengths, along with dopant profile characterization with damage threshold results, are also presented. For single-pass amplification, a single-pass linear gain of 7.4 was obtained for 29 nJ pulses of 5 ns duration at 1 MHz repetition rate. We also obtained a laser efficiency of over 58% in a diode-pumped configuration. These results confirm the potential for single-crystal fibers to overcome the limitations of the glass fibers commonly used in fiber lasers, making them prime candidates for high-power compact fiber lasers and amplifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-crystal rare-earth doped YAG fiber lasers grown by the laser-heated pedestal growth technique High concentrations of the rare-earth elements erbium, holmium and thulium

Single-crystal rare-earth doped YAG fiber lasers grown by the laser-heated pedestal growth technique Report Title High concentrations of the rare-earth elements erbium, holmium and thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated pedestal growth (LHPG) method. The spontaneous emission spectra and fluorescence...

متن کامل

Optical properties of single-crystal sapphire fibers.

Single-crystal sapphire fibers have been grown with the laser-heated pedestal-growth method with losses as low as 0.3 dB /m at 2.94 ?m. With the incorporation of a computer-controlled feedback system, fibers have been grown with less than +/-0.5 % diameter variation, or +/-1.5 ?m for a 300- ?m fiber. The losses in these fibers have been reduced further through a postgrowth anneal at 1000 degree...

متن کامل

Single-crystal YAG fiber optics for the transmission of high energy laser energy

Single-crystal (SC) fibers have the potential of delivering extremely high laser energies. Sapphire fibers have been the most commonly studied SC fiber and the losses for sapphire fibers have been as low as 0.4 dB/m for a 300micron core-only fiber at 3 microns. In this study we report on the growth of SC yttrium aluminum garnet, Y3Al5O12 (YAG) fibers from undoped SC source rods using the Laser ...

متن کامل

Distribution of oxidation states of Cr ions in Ca or Ca/Mg co-doped Cr:Y3Al5O12 single-crystal fibers with nitrogen or oxygen annealing environments

The valence states of Cr ions in Ca or Ca/Mg co-doped Cr:Y3Al5O12 (YAG) single-crystal fibers are studied. The fibers were grown using the laser-heated pedestal growth method, followed by annealing octahedral and tetrahedral sites takes place; its relative stabilization energy was estimated. For Ca,Cr:YAG annealed in an oxygen or nitrogen environment, it was 0.25 and 0.3 eV, respectively. For M...

متن کامل

INVESTIGATION ON GROWTH AND CHARACTERIZATION OF NONLINEAR OPTICAL DICHLORO-DIGLYCINE ZINC II SINGLE CRYSTAL

The study of amino acid based nonlinear optical (NLO) materials with optimum physical properties is an important area due to their practical applications such as optical communication, optical computing, optical information processing, optical disk data storage, laser fusion reactions, laser remote sensing, colour display, medical diagnostics, etc. Also, microelectronic industries require cryst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017